The Abundancy Index of Divisors of Odd Perfect Numbers

نویسنده

  • Jose Arnaldo B. Dris
چکیده

If N = qkn2 is an odd perfect number, where q is the Euler prime, then we show that σ(n) ≤ qk is necessary and sufficient for Sorli’s conjecture that k = νq(N) = 1 to hold. It follows that, if k = 1 then the Euler prime q is the largest prime factor of N and that q > 10500. We also prove that qk < 23n 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Ten Have a Friend?

Any positive integer n other than 10 with abundancy index 9/5 must be a square with at least 6 distinct prime factors, the smallest being 5. Further, at least one of the prime factors must be congruent to 1 modulo 3 and appear with an exponent congruent to 2 modulo 6 in the prime power factorization of n. 1 The Abundancy Index For a positive integer n, the sum of the positive divisors of n is d...

متن کامل

Abundancy “ Outlaws ” of the Form σ ( N ) +

The abundancy index of a positive integer n is defined to be the rational number I(n) = σ(n)/n, where σ is the sum of divisors function σ(n) = ∑ d|n d. An abundancy outlaw is a rational number greater than 1 that fails to be in the image of of the map I. In this paper, we consider rational numbers of the form (σ(N) + t)/N and prove that under certain conditions such rationals are abundancy outl...

متن کامل

Odd perfect numbers have at least nine distinct prime factors

An odd perfect number, N , is shown to have at least nine distinct prime factors. If 3 N then N must have at least twelve distinct prime divisors. The proof ultimately avoids previous computational results for odd perfect numbers.

متن کامل

RFSC 04-01 Revised A PROOF OF THE ODD PERFECT NUMBER CONJECTURE

It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k+1) ∏l i=1 q 2αi i to establish that there do not exist any odd integers with equality between σ(N) and 2N. The existence of distinct prime divisors in the repunits in σ(N) follows from a theorem on the primitive divisors of the ...

متن کامل

The Imperfect Fibonacci and Lucas Numbers

A perfect number is any positive integer that is equal to the sum of its proper divisors. Several years ago, F. Luca showed that the Fibonacci and Lucas numbers contain no perfect numbers. In this paper, we alter the argument given by Luca for the nonexistence of both odd perfect Fibonacci and Lucas numbers, by making use of an 1888 result of C. Servais. We also provide a brief historical accou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1103.1090  شماره 

صفحات  -

تاریخ انتشار 2011